Article: BMC genomics

The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown
A Levasseur, A Lomascolo, O Chabrol, FJ Ruiz-Dueñas, E Boukhris-Uzan, …
BMC genomics 15 (1), 486

Background

Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology.

Results

The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases.

Conclusions

With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.

 

Article: Frontiers in Plant Science

Thiol-based redox homeostasis and signalling
FJ Cejudo, A Meyer, JP Reichheld, N Rouhier, JA Traverso
Plant Physiology 5, 266

Plants imperatively have to cope with adverse conditions owing to their lack of mobility and to the high amounts of reactive oxygen species (ROS) generated from both respiration and photosynthetic metabolism. Although thiol redox homeostasis in plants is mainly preserved by the cellular glutathione pool, specific strategies have been adopted by the plant kingdom during evolution to manage these “extra” pro-oxidative conditions. Unlike human or yeast, plants generally possess a higher number of genes coding for antioxidant proteins, including protein families responsible of dithiol/disulfide exchange reactions. During the last decades, redox-dependent post-translational modifications of proteins proved to be pivotal to many cellular functions. In particular, this is critically important under some situations of environmental constraints taking into account the alterations and fine adjustment of the cellular redox status occurring during and after any biotic or abiotic stresses. Indeed, thiol groups of cysteinyl residues are highly sensitive to oxidation which might critically perturb cellular homeostasis. Members of the thioredoxin superfamily are key proteins involved in the regulation of cysteine/protein redox state. They share two common and well-known features: (i) the presence of an active center containing at least one catalytic cysteine residue, and (ii) a highly conserved 3D-structure, the so-called thioredoxin fold, which consists of a four-stranded anti-parallel b-sheet surrounded by three a-helices. Key members of this super family are thioredoxins  (TRX) and glutaredoxins (GRX). Representatives of both subgroups are distributed in most cellular compartments and contain at least one TRX motif in their structures. While TRXs are generally reduced by thioredoxin reductases (TR), the reduction ofGRXs depends on reduced glutathione (GSH).

Article: PNAS

Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes
JM Plett, Y Daguerre, S Wittulsky, A Vayssières, A Deveau, SJ Melton, …
Proceedings of the National Academy of Sciences, 201322671

Abstract

Ectomycorrhizal fungi, such as Laccaria bicolor, support forest growth and sustainability by providing growth-limiting nutrients to their plant host through a mutualistic symbiotic relationship with host roots. We have previously shown that the effector protein MiSSP7 (Mycorrhiza-induced Small Secreted Protein 7) encoded byL. bicolor is necessary for the establishment of symbiosis with host trees, although the mechanistic reasoning behind this role was unknown. We demonstrate here that MiSSP7 interacts with the host protein PtJAZ6, a negative regulator of jasmonic acid (JA)-induced gene regulation in Populus. As with other characterized JASMONATE ZIM-DOMAIN (JAZ) proteins, PtJAZ6 interacts with PtCOI1 in the presence of the JA mimic coronatine, and PtJAZ6 is degraded in plant tissues after JA treatment. The association between MiSSP7 and PtJAZ6 is able to protect PtJAZ6 from this JA-induced degradation. Furthermore, MiSSP7 is able to block—or mitigate—the impact of JA on L. bicolor colonization of host roots. We show that the loss of MiSSP7 production by L. bicolor can be complemented by transgenically varying the transcription of PtJAZ6 or through inhibition of JA-induced gene regulation. We conclude that L. bicolor, in contrast to arbuscular mycorrhizal fungi and biotrophic pathogens, promotes mutualism by blocking JA action through the interaction of MiSSP7 with PtJAZ6.

Article: Biochem J.

 Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants

http://www.biochemj.org/bj/imps/abs/BJ20140390.htm

Pierre-Alexandre Lallement, Edgar Meux, José M Gualberto, Pascalita Prosper, Claude Didierjean, Frederick Saul, Ahmed Haouz, Nicolas Rouhier and Arnaud Hecker

Abstract

Glutathione transferases (GSTs) represent a superfamily of multifunctional proteins which play crucial roles in detoxification processes and secondary metabolism. Instead of promoting the conjugation of glutathione to acceptor molecules as most GSTs, members of the Lambda class (GSTLs) catalyze deglutathionylation reactions via a catalytic cysteine residue. Three GSTL genes (Pt-GSTL1, Pt-GSTL2, Pt-GSTL3) are present in Populus trichocarpa, but two transcripts, differing in their 5’ extremities, were identified for Pt-GSTL3. Transcripts for these genes were primarily found in flowers, fruits, petioles and buds, but not in leaves and roots, suggesting roles associated with secondary metabolism in these organs. The expression of GFP fusion proteins in tobacco showed that Pt-GSTL1 is localized in plastids, whereas Pt-GSTL2 and Pt-GSTL3A and B are found in both the cytoplasm and the nucleus. The resolution of Pt-GSTL1 and Pt-GSTL3 structures by X-ray crystallography indicated that although these proteins adopt a canonical GST fold quite similar to that found in dimeric Omega GSTs, their non-plant counterparts, they are strictly monomeric. This might explain some differences in the enzymatic properties of both enzyme types. Finally, from competition experiments between aromatic substrates and a fluorescent probe, we determined that the recognition of glutathionylated substrates is favoured vs non-glutathionylated forms.

Article: Planta

Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship

S Perotto, M Rodda, A Benetti, F Sillo, E Ercole, M Rodda, M Girlanda, C. Murat, R. Balestrini. Planta, 1-13

Abstract

Main conclusion

Orchid mycorrhiza has been often interpreted as an antagonistic relationship. Our data on mycorrhizal protocorms do not support this view as plant defence genes were not induced, whereas some nodulin-like genes were significantly up-regulated.

Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

Article: New Phytologist

Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems
I Bödeker, KE Clemmensen, W Boer, F Martin, Å Olson, BD Lindahl. New Phytologist

Summary

  • In northern forests, belowground sequestration of nitrogen (N) in complex organic pools restricts nutrient availability to plants. Oxidative extracellular enzymes produced by ectomycorrhizal fungi may aid plant N acquisition by providing access to N in macromolecular complexes. We test the hypotheses that ectomycorrhizal Cortinarius species produce Mn-dependent peroxidases, and that the activity of these enzymes declines at elevated concentrations of inorganic N.
  • In a boreal pine forest and a sub-arctic birch forest, Cortinarius DNA was assessed by 454-sequencing of ITS amplicons and related to Mn-peroxidase activity in humus samples with- and without previous N amendment. Transcription of Cortinarius Mn-peroxidase genes was investigated in field samples. Phylogenetic analyses of Cortinarius peroxidase amplicons and genome sequences were performed.
  • We found a significant co-localization of high peroxidase activity and DNA from Cortinarius species. Peroxidase activity was reduced by high ammonium concentrations. Amplification of mRNA sequences indicated transcription of Cortinarius Mn-peroxidase genes under field conditions. The Cortinarius glaucopus genome encodes 11 peroxidases – a number comparable to many white-rot wood decomposers.
  • These results support the hypothesis that some ectomycorrhizal fungi – Cortinarius species in particular – may play an important role in decomposition of complex organic matter, linked to their mobilization of organically bound N.

Article: Global Change Biology

Modeling climate impact on an emerging disease, the Phytophthora alni induced alder decline J Aguayo, F Elegbede, C Husson, FX Saintonge, B Marçais. Global Change Biology

Abstract

Alder decline caused by Phytophthora alni is one of the most important emerging diseases in natural ecosystems in Europe, where it has threatened riparian ecosystems for the past 20 years. Environmental factors, such as mean site temperature and soil characteristics, play an important role in the occurrence of the disease. The objective of the present work was to model and forecast the effect of environment on the severity of alder Phytophthora outbreaks, and to determine whether recent climate change might explain the disease emergence. Two alder sites networks in NE and SW France were surveyed to assess the crown health of trees; the oomycete soil inoculum was also monitored in the NE network. The main factors explaining the temporal annual variation of alder crown decline or crown recovery were the mean previous winter and previous summer temperatures. Both low winter temperatures and high summer temperatures were unfavorable to the disease. Cold winters promoted tree recovery because of poor survival of the pathogen, while hot summer temperature limited the incidence of tree decline. An SIS model explaining the dynamics of the P. alni induced alder decline was developed using the data of the NE site network and validated using the SW site network. This model was then used to simulate the frequency of declining alder over time with historical climate data. The last 40 years’ weather conditions have been generally favorable to the establishment of the disease, indicating that others factors may be implicated in its emergence. The model, however, showed that the climate of SW France was much more favorable for the disease than that of the Northeast, because it seldom limited the overwintering of the pathogen. Depending on the European area, climate change could either enhance or decrease the severity of the alder decline.

 

 

 

 

Article: European Journal of Plant Pathology

Microsatellite analysis of Icelandic populations of the poplar fungal pathogen Melampsora larici-populina shows evidence of repeated colonization events

SE Elefsen, P Frey, H Sverrisson, JH Hallsson
European Journal of Plant Pathology, 1-12

Abstract

The basidiomycete Melampsora larici-populina causes foliar rust on Populus species from the sections Aigeiros and Tacamahaca, causing reduction in biomass production and economic losses. In the present study, samples of Icelandic M. larici-populina were collected for analysis of genetic diversity and population structure. A total of 439 isolates, collected at 15 locations, and analysed using 22 microsatellite markers were compared to data from French M. larici-populina populations. Twenty-one of the loci analysed were polymorphic, with an average of 3.4 alleles per locus. The mean observed and expected heterozygosities for all populations were 0.35 and 0.38. Evidence was found for a substructure within the Icelandic population with three subpopulations being the most likely scenario with low levels of gene flow. The population structure seen here is most likely shaped by both isolation and genetic drift as well as repeated events of colonization. In the future it can therefore be expected that regional poplar rust genotypes in Iceland change by two different modes; on one hand by transport of spores within the country and on the other hand by repeated colonization events. The results reported here underline the importance of closely monitoring the development of fungal diseases in Iceland, and to carefully select for resistance in Icelandic plant breeding programs.

Article: Frontiers in Plant Science

Genome analysis of poplar LRR-RLP gene clusters reveals RISP, a defense-related gene coding a candidate endogenous peptide elicitor. B Petre, S Hacquard, S Duplessis, N Rouhier. Frontiers in Plant Science

Abstract

In plants, cell-surface receptors control immunity and development through the recognition of extracellular ligands. Leucine-rich repeat receptor-like proteins (LRR-RLPs) constitute a large multigene family of cell-surface receptors. Although this family has been intensively studied, a limited number of ligands has been identified so far, mostly because methods used for their identification and characterization are complex and fastidious. In this study, we combined genome and transcriptome analyses to describe the LRR-RLP gene family in the model tree poplar (Populus trichocarpa). In total, 82 LRR-RLP genes have been identified in P. trichocarpa genome, among which 66 are organized in clusters of up to seven members. In these clusters, LRR-RLP genes are interspersed by orphan, poplar-specific genes encoding small proteins of unknown function (SPUFs). In particular, the nine largest clusters of LRR-RLP genes (47 LRR-RLPs) include 71 SPUF genes that account for 59% of the non-LRR-RLP gene content within these clusters. Forty-four LRR-RLP and 55 SPUF genes are expressed in poplar leaves, mostly at low levels, except for members of some clusters that show higher and sometimes coordinated expression levels. Notably, wounding of poplar leaves strongly induced the expression of a defense SPUF gene named Rust-Induced Secreted protein (RISP) that has been previously reported as a marker of poplar defense responses. Interestingly, we show that the RISP-associated LRR-RLP gene is highly expressed in poplar leaves and slightly induced by wounding. Both gene promoters share a highly conserved region of ~300 nucleotides. This led us to hypothesize that the corresponding pair of proteins could be involved in poplar immunity, possibly as a ligand/receptor couple. In conclusion, we speculate that some poplar SPUFs, such as RISP, represent candidate endogenous peptide ligands of the associated LRR-RLPs and we discuss how to investigate further this hypothesis.

Article: Frontiers in Plant Science

Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection
P Talhinhas, HG Azinheira, B Vieira, A Loureiro, S Tavares, D Batista, …
Frontiers in Plant Science

Hemileia vastatrix is the causal agent of coffee leaf rust, the most important disease of coffee Arabica. In this work, a 454-pyrosequencing transcriptome analysis of H. vastatrix germinating urediniospores (gU) and appressoria (Ap) was performed and compared to previously published in planta haustoria-rich (H) data. A total of 9234 transcripts were identified and annotated. Ca. 50% of these transcripts showed no significant homology to international databases. Only 784 sequences were shared by the three conditions, and 75% were exclusive of either gU (2146), Ap (1479) or H (3270). Relative transcript abundance and RT-qPCR analyses for a selection of genes indicated a particularly active metabolism, translational activity and production of new structures in the appressoria and intense signaling, transport, secretory activity and cellular multiplication in the germinating urediniospores, suggesting the onset of a plant-fungus dialogue as early as at the germ tube stage. Gene expression related to the production of carbohydrate-active enzymes and accumulation of glycerol in germinating urediniospores and appressoria suggests that combined lytic and physical mechanisms are involved in appressoria-mediated penetration. Besides contributing to the characterization of molecular processes leading to appressoria-mediated infection by rust fungi, these results point toward the identification of new H. vastatrix candidate virulence factors, with 516 genes predicted to encode secreted proteins. –